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A BOUNDARY-VALUE PROBLEM FOR A NONLINEAR HEAT-CONDUCTION

EQUATION
K. G. Valeev and Yu. V. Rakitskii

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki,

Methods for the numerical solution of the boundary-value problem are

considered. One method is related to the method of successive approx-
imations and the other employs the collocation method [1]. A relation-

ship between the latter method and the Ritz and Galerkin methods [2]
is shown. An application of the collocation method to the nonstation-
ary problem is given. The approximate solution is represented in ana-~
lytic form. A way of finding the absolute error of the approximate
solution is given.

1. Some inequalities related to the solution of the
boundary-value problem. We consider the nonlinear
partial differential equation in dimensionless form

] w02
al: auusz"ayL: Fu, z, 9). (1.1)

The solution is sought in the simply connected re-
gion D with the boundary T with the given initial and
boundary conditions

ulp=0, ul,=9® ¥, (Hed. (1.2

The nonlinear continuous function F(u,x,y) is as-
sumed to be increasing in u when x and y are fixed.
It characterizes the heat losses due to heat transfer
to the ambient medium.

First, let us consider the stationary problem

Au=F(u, z, y), (2, =D, u|p=0 (1.3)

and note certain inequalities. From physical con-
siderations, the existence and unigueness of the solu-
tion of boundary-value problem (1.8) are obvious.

Lemma 1. If F(0,x,y) =0 when (x,y) € D, then
u(x,y) = 0 when (x,y) € D.
Proof. Conversely, let the inequality
u (2, y) <0,
and (z,v) =0,

(z, y) € D*;
(z, ) &T* (14)

be satisfied in some region D¥D* C D) with the boundary I'*,
From Green's theorem

S ——ds SS—;— Z’; +6y( gy)]dwdy (1.5)

We find atv=u

S [uF (x, 2, ) 4 (grad w)?l dody = 0 . (1.6)
o

In view of the assumption that
Fy' (uy 2 9) >0 (z, ) €D 1.1

we have the inequality

S uF (u, s, Y)dedy 2 0. (1.8)
e
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This contradicts (1.6), since u#® 0 in D*, and, therefore,

SS (grad u)2dzdy >0. (1.9)
D

The lemma is proved. Its physical meaning is obvious. If heat
influx occurs when u = 0, then in D the temperature u is nonnegative
for the stationary solution,

Note 1. We can prove the following: if F(0,x,y) < 0 when (x,y) €
€D and Fy'(u,x,y) = 0, then w(x,y) > 0 when (x,y) €D.

Now let us compare the solutions of (1.3) with dif-
ferent right-hand sides. Along with (1.3), we have the
golution of the boundary~value problem

Av=® @, z,p), (r,ye&D, vp=0. (1.10)
Lemma 2. If in D
O,z y)>F(u, 2,y when v>u (1.11)
then
u(x, y)>v(r,y) when (s, y)ED. (1.12)

Proof. We shall assume the opposite. In some region D* € D with
the boundary I let

u(z, ) <vizy), (v D,
u(z, y) =vixy), (zyel*. (1.13)

If into (1.5) we substitute u — v for v and u — v for u, then from
(1.3) and (1.10) we obtain

SS (u — o) F (u, 2, y) — @ (v, z, y)) dedy <L 0. (1.14)
D+

This contradicts assumption (1.13) and condition (1.11). The lem-
ma is proved.

The physical meaning of the lemma is that when the heat outflow
is greater, the temperature v in the stationary solution is lower,

Note 2. We can prove that when

@ (v, z, yY) > F (u, =, ¥), (z, y ED whenv>u (1.15)

we have the absolute inequality u(x,y) > v(x,y), (x,y) ¢ D.
These inequalities are similar in meaning to the maximum prin-
ciple [3].

2. Finding the error of the approximate solution. '
Let the approximate solution u =uy(x,y) of problem
(1.3), which satisfies the boundary condition

Uo (z1 Zl/) = 07 (x’ y) eT (2.1)
be known.
We estimate the value
Z=U—u,. (2.2)

We introduce the residue function of the approxi-
mate solution

9 (1, y) =_Au0 (Zi y) + F (um Z, !/)- (2'3)
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The equations for z take the form

Az =F (Z -]-uo,:c, y) - AuO (xi y)y

z II! = O, (2:4:)
The possibility of the representation
F (Z +u07 z, y) - Auo (.’t, y) =
=8(z, y) +1(z 2. p) z, (2.5)
Az, 2, 9) >0, (= yeED (2.6)

follows from (1.7).
Let us introduce, together with 6(x,y), the auxiliary
functions

8, (z, y) = min {0, 8 (z, )}, 8; (z, y) <0, (2.7)

62 (.’C, ]/) = max {O’ 6 (27, y)}1 62 ($1 y) > 0, (2'8)

and consider the boundary-value problems
Azl = 61 (z7 y) +7" (zlr .l', y) Zl, 21 IF = 0: (2'9)

(2.10)

Azz = 62 (3:’ .l/) + A (Zz, z, y) Zg, ZZII‘ =0,

From Lemma 2 and the obvious inequality §,(x,y) =
8(x,y) = 8(x,y), we have the bound for z

z2<z<zly

A

(z.y)eD. (2.11)
It follows from (2.7), (2.8), and Lemma 1 that z; =
0, z3 =0. Using Lemma 2 and the positiveness of
Zy, We can overestimate z; by discarding the positive
term in (2.9). We find that

v

2 (z, ) <w, (7, y), (& NED, (2.12)

where w(x,y) is the solution of the boundary-value
problem

Aw, = min {0, 8 {(z, y)}, wlp =0, (2.13)

Similarly, we find the solution of the boundary-value
problem

Aw, = max {0, d (z, y)}, wyp = 0 (2.14)

and arrive at the following theorem.

Theorem 1. The error z(x,y) (2.2) of the approxi-
mate solution uy(x,y) of boundary-value problem (1.8)
is estimated by the inequality

wy (2, ) <z o,y <w, (z, ¥), @y =D, (2.15)

where w; and w, are the solutions of boundary-value
problems (2.13) and (2.14), and the function 6(x,y) is
defined in (2.8).

Corollary 1. The estimate can be simplified. We introduce the
number M,

M > |Auy (%, ) — F (4 (%, 3}y = 9}

(zmy)ED 4T, (2.16)
and solve the boundary-value problem in the region D
Aw = — 1, wlp=0. (2.17)

The error of the solution of (1.3) is estimated by the formula

| u(z, ¥) — ua (2, w) | < Mw (2, ¥). (2.18)

Note 3. It follows from Theorem 1 that the smaller ]6(x.y)| in D,
the smaller, in general, the error of the approximate solution uy(x,y).
It is natural to think of using the collocation method, i.e., choosing
uo(x,y) such that the residue §(x,y) vanishes at given points (xk, yk) in
D.

Note 4. Theorem 1 can be extended to the three-dimensional
(n-dimensional) case, We shall formulate it without proof.

Theorem 2. We comsider the boundary-value problem

Pu/ox? 0%u/oyt+4 %u/o2—F(u, 2,y 2)=0,

(z, ¥, ) ED (2.19)

with the boundary condition

u(z,y, 2 =0, (z,y, 2 ET, (2.20)

where D is a simply connected three-dimensional region with the
boundary T'.

The function F is continuous and does not decrease with increasing
u:

Fy (u, 2 9, 2) > 0, (z, vy, DED, (2.21)

Let the approximate solution u(X,y,2), which satisfies the boun-
dary condition, be found. We find
M =max| Ay i,y 3} —
—F (4 (z: 9 2y &, 9 D (m Y, 2)ED 4T, (2.22)

To estimate the approximate solution we have the inequality

|u(z, ¥, 2) — up (%, ¥, 2) | < Mw (2, y, 2), (2.23)
where w(x,y,z) is the solution of the boundary-value problem
Aw+1=0,w(z, 9y 2)=0, (=, y, ) ET. (2.24)

Nots 5. If the limits u®) and u(’) of variation of u in the solution
of (1.3) are known and between these u values we have

0SM < F) (w9 Ay, (=, y) €D, (2.25)

to find the error of the approximate solution we can, instead of the
Poisson equations (2.13), (2.14), (2.17), and (2.24), solve the Helm-
holtz equation, which, in the case of (2.17) for example, takes the
form Ay — Mw = 1.

3. Pinding the error of the solution in a unit circle.
Let the region D be the interior of a unit circle. We
seek the solution u(p, ¢) of the boundary-value problem

0u> 1 0%

1 9
T%(p'ﬁ; FW—__F(uv P, (P), LL('I, (P) 20’ (3'1)

where the function F{u, p,¥) is assumed to be increas-
ing in u for fixed p and ¢. Let the approximate solution

U = Uy (P’ q))) Uy (1’ (P) = 0: (3-2)

be found somehow. )
We calculate the maximum value of the residue at
0=p=1l 0=s¢p=27

e
1 %,

+Fa—p,'*F(uo, [N ‘P)l

M = max, ,

(3.3)

The error of the approximate solution is estimated
by the formula

5“(9: ‘P)'“o(Pv q7)§ <

<025 (1 —0%) M<O025M. (3.4)
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This follows from the solution of auxiliary equation
(2.17) and the use of Corollary 1.

4. Method of successive approximations. Stationary
problem (1.3) can be solved by using a method of suc-
cessive approximations that consists in the successive
solution of a number of boundary-value problems for
a Poisson equation of the form

ALL]'.H == F(uj’ x, y)v (xr y) D,

ujlp=0 (=0,1,2,..). (4.1)

As u, we can take any function; for example, uy = 0.
It follows from Theorem 1 that the sequence uj(x, V)
converges uniformly in D on the solution if

fw(z, y) Fu' (@, 2, y) [<1,

(=, yeD, V<u<u® (4.2)

where u® and u(® are the a priori known limits of
variation of u. In particular, for the solution of (3.1)
the convergence condition for the successive approxi-
mations takes the form

(]’nixul(l”_pz)Ful(uv 0, (P)|<4

O<p<L 0<e <, W< u<ul), (4.3)

To improve the convergence of uj(x,y), we can ex-
tract from F(u,p,?¢) the part that is linear inu, for
example, using the condition

m)‘in max | Fy, (¥, 0, 9)—h|, (4.4)

o, u

where p, ¢, and u are defined in (4.3). The successive
approximations lead to the solution of a number of
boundary-value problems for the Helmholtz equation

Aujpy — Mgy = F(u;, z, y)— Auj(z, y),

(z, y) D u;ir =0, u=0 (=0,1,2,...), (4.5)

Example. If by this method we solve the boundary~-value problem
atu =0
Puldz+ FPu/dyP= —1+ 01 ut, u=0
(42 =1) (4.6)
we obtain, using polar coordinates,
Uy =0, (2, y)=0.25—0.25 (@493, u(z, y) =
== 0.2454 — 0.2438 (2% 4 92) — 0.0016 (22 4 492, (4.7)

From estimate (3.4) we find that the error of the approximate sol-
ution ua(x,y) does not exceed 0.0003.

5. Solution of the inhomogeneous Helmholtz equation.

Boundary-value problems for inhomogeneous linear
equatinns must be solved in the method of successive
approximations. For a circular region, for the Helm-
holtz equation it is often necessary to find u{p,¢),
where

1 0 a 1 o0? o
—#(P—a—g) + p—zré"—hu = kgo f1 (p) cos 2kep,

u(1, 9) =0, (5.1)

Fr(0) = D frnp?®m (5.2)

n=0

We shall assume that the series in (5.1) and (5.2)
converge absolutely and uniformly when [p| =1, 0 =
= ¢ = 27. We seek the solution u{p,¢) in the form of
a series

oo

u(p, 9) = X wy(p) cos 2ky,

A=0

w,(1) =0. (5.3)
To find wi(p), we obtain the equations

() — Moy (o) — M (0) = i ). (5.4)

This is an inhomogeneous Bessel equation. Direct
calculations convinced the authors that it was more
convenient to seek the solution wi(p) at once in the
form of a special series

wi(0) = 0% [ a0 i gy +

prt—1 pP—1
+a iy sy o) (5.5)

For the coefficients ay we obtain the equations

& 1
@+ X B F T2 ) % = s (5.6)
n=0

an—’h[m‘]an—lszn (n=1,2,...). (5.7)
When a, is undetermined, a;. ay, ... are deter-
mined successively from (5.7). If we substitute them
into (5.6), we obtain gy. With many iterations, it is
first of all convenient to find partial solutions that
correspond to a one-term right side of the form

T (p) = p¥+an (n=0,1,2,...).

6. Estimates of nonstationary solutions. Letu(t, x,
y) be the solution of Eq. (1.1).
Let us consider the integral

QE)= SS u*(t, z, y)dzdy. (6.1)
D

From (1.10), differentiating (6.1), we obtain

dQ (t)
at

= ZSS uAudz dy — 2 35 ufF (u, z, y)dzdy. (6.2)
D D

Let A be the maximum value of w, where w is the
solution of boundary-value problem (2.17),

w [p = O,
A =max, ,w(z, y), (z, y) = D. (6.3)

The value A is a function only of the region D. From
Note 1, we find that w(x,y) > 0 when (x,y) € D.

Let us introduce the eigenvalues and eigenfunctions
of the boundary-value problem ([1], p. 671)

Au +pu =0, ulp =0. (6.4)

We shall let vi(x,y), vy(x,¥)s ... be the eigenfunc-

tions.
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The corresponding eigenvalues y will be uy, pg, ««-

In the numbering, it is assumed that
0 <P <oee ‘ (6.5)

Using the extremal nature of the eigenvalues and
eigenfunctions, we find that the minimum of the in-
tegral

__SDSuAu dzdy =S§grad2udxdy (6.6)

for the functions u, which are continuous in D along
with the second derivatives and which satisfy the con-
dition

SSu“dwdy:L ap=0 (6.7)

D

is reached at u = v and has the value y;. We have

WSS u’dxdy<—SSuAudmdy. (6.8)
7 )

From Theorem 1, when 6(x,y) =—1 in (2.14), for
the equation

Av; +py =0 (6.9)
and condition (6.3) we obtain the estimate
vi(z, ) < max vy (2, ¥) a4y . (6.10)

Hence, we have the lower bound for the first eigen-
value p

ATy . (6.11)

Let condition (2.25) be satisfied. Whenu = 0, we
obtain the following inequality for any «:

uf (u, =, y)>}"u’2 +F (07 T, Yu>
> A—Yy,a?)u — Y, a2 (0, z, y). (6.12)
From inequalities (6.8), (6.11), and (6.12), we
arrive in (6.2) at the differential inequality

d%t(t)<—<-%—+2k—a2>9(t)+

-
+ | (0., 7, y) dady. (6.13)
D

I we integrate (6.13), we obtain the integral esti-
mate of the solution

SS u?(t, r, y)drdy e SS u?(0, z, y)dzdy +
D

Ho®

—~xt
+i=f SlSFZ(o, z, yydw dy,

=247 424 —a2>0. (6.14)

Many different inequalities for the solution of Eq.
(1.1) can be derived from formula (6.14). Let, for
example, uy(x,y) be the stationary solution of problem
(1.1) and (1.2}). We shall let

z{t z, ) =u(t z, y) — u, (2, ). (6. 15)

For z, we have the equations

9z/ 0t = Az — [F (z + ug, @, §) — Ayl ,

2lp=0, zlmo =0 (2, P— U (z, y).  (6.16)

From (6.14) we obtain the inequality

gwmmw—%wwwww<

D

<e 0@ ) —n (@ Yirdzdy,
D
# =241+ 2, (6.17)

where A is defined in (6.3) and A in (2.25). Estimates
can be obtained for the difference between solutions of
problem (1.1} and (1.2) with different initial conditions.
From Section 3, we find that for a unit circle Al =4,

7. The Galerkin method in the nonstationary prob-
lem. We take the set of orthogonal normalized func-
tions zpj &y

Svs@ @y asdy=0 G+n,

D
Ner@ paeay=1,  wle=0. 7.1)

D

We shall seek the approximate solution of problem
(1.1)—(1.3) in the form of a finite sum

u* (t, =, y) =
=0y (t)“Pl (I, y) + eee + Qan (t)"«pn (‘T: y)v

w*p=0. (7.2)

By substituting u*(t, x, y) into (1.1), we obtain the
residue

§(t, , y) = du*/ 9t — Au* L F (u*, u, y). (7.3)

We select the coefficients a;(t) from the condition
that 6(t, X, y) be orthogonal to the functions ¥ x,5)
(j =1,...,n) in D. We obtain the system of ordinary
differential equations

n

da;

.d_: = z\' Bﬁai——]‘,-(un L] a'n)
f=1

=1,...m, (74)

By =\ i0udady, 1= 5§F @', 2, y);dedy. (1.5)
D

The initial conditions for aj are found, using (1.2),
from the equations

a;(0) =\ ¥s (2, Y o (=, 9) dudy. (7.6)
D

If we solve (7.4), using analog computers, for
example, we find the approximate solution u*(t,x,y).
Formula (6.14) can be used to estimate the error. We
shall show that system of differential equations (7.4)
is asymptotically stable. First, we shall demonstrate
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the boundedness of the solutions. If we multiply the
j-th equation of (7.4) by aj and sum, we find

2 a; dt‘ SS wAu® dxdy~SSF(u‘, z, y)utdzdy. (1.7)

From inequalities (6.6), (6.12), and (7.7) we obtain

;t Z ap < — (247 4 20 — o) SS (") dz dy +

=1

+a2\\ (0, 5, pydzdy, 7.8)
D

where « is any number. We shall select it from the
condition

x = 24- 1 2A —a® > 0. (7.9)

Since we have

SS(u 2dzdy = SS i a;0;0:0; dvdy = %a,—z, (7.10)

D i,j=1 j=1

from (7.8) we find the estimate for the approximate
solution

n

2 e SS[u 0, z, Y12dedy +

j=

—xt

+ 25 SSW(O %, y)dzdy. (7.11)
Note that the inequality
2 Buasa; << — 2 a < — ——:1— a2 (7.12)

i, j=1 =1 j=t

follows from (6.8) and (6.11).

Along with the solution aj(t) of system (7.4), let us
consider another solution bj(t) whose initial values
differ from (7.6). We have

db <
—Z—J—: Z Bjibi'-fj(blv-"ﬂb'n) (]'=1,...,n)_

(7.13)
i=1
From (7.4) and (7.13) we obtain
d < <
g 2 (=) =2 D Bula;—by)x
j=1 1, j=1
X (@ —b)— Q (a1y . « oy By b1y o v oy b)e (7.14)
Here,
Qa1 . ey p by, .. b)) =

n

=2 2 (a;— b)) Ifi(a, -

j=1

-y an)—fj(bh ey bn)] ==
=ZSS (u* — u°) (F (u*, z, y)— F (2°, 2, y)) dzdy, (7.15)
D

%= by () Y1 (z, ¥) + - .. -+ ba () Pu (&, Y)- (7.16)

In view of assumption (1.7), a nonnegative func-
tion is under the integral in (7.15). From (7.12)

and (7.14), therefore, we have the differential in-
equality

K—247 Q) (g;— by (1.17)
=1

d n
a2 (a;— b))
=

Integrating (7.17), we find the estimate

n

2 a0 —b;O1r <

=1

< exp {—247} 3 [¢;(0)—b;(0)1%, 4 >0. (7.18)

=1

The existence of a unique stationary solution of sys-
tem (7.4) follows from (7.11) and (7.18). This solution
is uniformly asymptotically stable.

8. Application of the collocation method to the non-
stationary problem. Let us consider some quadrature
formula with nodes at the points Mj(xi,yj) for calcula-
tion in D of the definite integral

Sﬂa(x y) dedy =~ ZAa(a,“ v), M,eD, (8.1)

i=1

Equations (7.4) are approximately represented as

SS“’ (t, %, )i (z, y)dwdy ~
D

= 2 AS (2, y) 0 (@, 1) =0 (=1,...,n). (8.2)

i=1

Equations (8.2) can, in turn, be satisfied if

& [ daj
Btz v = 3 [0 @ 1) —

J=1

— A )| F @ T =0, (83)

u‘l.* = (t) ’qu (xiv yi) + . v +an (t) 1pn ('Ziv yi) . (8.4)

The main advantage of Eqs. (8.3) is the simplicity
of their formulation. This advantage of the collocation
method over the Galerkin method or Ritz method (for
the stationary problem) becomes obvious with non-
linear equations. In this case, exact calculation of the
integrals in (7.5) is often impossible. The use of quad-
rature formulas results in Egs. (8.2), which are equiv-
alent to the equations of the collocation method. If a
formula of increased accuracy is used when the collo-
cation points are the nodes of the quadrature formula,
the results of the Galerkin and collocation methods
become virtually equivalent.

Let quadrature formula (8.1) give an accurate an-
swer in calculation of integrals of the form

55% (@, ¥) Pp (z, y)dxdy = 8y, (8.5)

where 6i is the Kronecker symbol. If we take the
eigenfunctions Vj (x,y) of boundary-value problem (6.4)
with different eigenvalues yj (6.5) for the normalized
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orthogonal functions qu (%,y), solution of Egs. (8.3) with
respect to the derivatives results in the equations

da;
— T e+
In

n
+ Z Aw;i (@, y) F (E a0y (25, U), Tis ?Ji) =0. (8.6)

i=1 k=1

Another course in the collocation method consists
in selection of functions ¥j(x, y) that satisfy the con-
ditions

Vi (xi, 13 = 6ijv 6 =1,
8ii=0 (+p, Ylr=0. (8.7)
Equations (8.3) take the form

n
da;

a Z @;8; (23, yi) — F (a3, 3, )

=1

(i=1,...,n. (8-8)

Note that the linear part will be simple in system (8.6},
while in system (8.8) the nonlinear functions, which
are functions only of one of the variables aj, will be
simple. System (8.8) has a unique uniformly asymp-
totically stable solution by virtue of its similarity to
system (7.4).

Example. We solve the boundary-value problem
fufot=20%/0z*+ 1, ul;_,=0,
Ul ymg=t|ymy = 0. (8.9)

Using only one collocation point x = 0.5, we shall seek the solu-
tion as the function

u(t, ¥)=a(l)z (1 —z),a(0)=0 (8.10)

which satisfies the initial and boundary conditions.
If we substitute u(t,x) into (8.9) at x = 0.5, we have

0.25da (t)/ dt = — 22 (8) + 1, a(0) =0, (8.11)
We find the approximate solution

up (2, z) =05 (z — 2% (1 — e 8. (8.12)
The exact solution has the form

u(t, z)= % > sin(2n 4 1)nz {1 —

n=0

— exp [— (20 4 1)2 o]} (8.13)

The maximum deviation of the approximate solution from the
exact is 0.008 at t ~ 0.12 and x = 0.5, The stationary solution is
found exactly.

9. Solution of the stationary boundary-value prob-
lem. In seeking the stationary solution of problem
(1.1) and (1.2) by the Ritz, Galerkin, or collocation
method, we obtain a system of nonlinear equations.
For example, with the coordinate functions zp]- (x,¥),
which satisfy conditions (8.7), the collocation method
gives the equations

> @B (s, ys) — F (aq, 2, y3) = 0

=1
(i=1,...,n). ©9.1)

They can be solved by the method of successive
approximations, which follows from system (8.8),

@i, my1 = Qi +h [ 2 aijwj (@, ¥3) —
j=1
— F (@im i 93)|
((=1,..n, m=01,2, ... 0h>0. (9.2)

We take arbitrary values for ai;. For sufficiently
small h > 0, by virtue of the asymptotic stability of
the solutions of system (8.8), the solution a; of sys-
tem {9.1) is found from (9.2)

a; = lim a;,, for m— oo. (9.3)

Note that for the nonstationary problem (1.1) and
(1.2), the collocation method is much less time-con~
suming than the net method.
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